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a b s t r a c t

A novel Bloch band based level set method is proposed for computing the semiclassical
limit of Schrödinger equations in periodic media. For the underlying equation, subject to
a highly oscillatory initial data, a hybrid of the WKB approximation and homogenization
leads to the Bloch eigenvalue problem and an associated Hamilton–Jacobi system for the
phase in each Bloch band, with the Bloch eigenvalue be part of the Hamiltonian. We formu-
late a level set description to capture multi-valued solutions to the band WKB system, and
then evaluate total homogenized density over a sample set of bands. A superposition of
band densities is established over all bands and solution branches when away from caustic
points. The numerical approach splits the solution process into several parts: (i) initialize
the level set function from the band decomposition of the initial data; (ii) solve the Bloch
eigenvalue problem to compute Bloch waves; (iii) evolve the band level set equation to
compute multi-valued velocity and density on each Bloch band; (iv) evaluate the total posi-
tion density over a sample set of bands using Bloch waves and band densities obtained in
steps (ii) and (iii), respectively. Numerical examples with different number of bands are
shown to demonstrate the capacity of the method.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In this paper we are concerned with numerical computation of physical observables to the linear Schrödinger equation
i�@tw
� ¼ � �

2

2
@x b

x
�

� �
@xw

�
� �

þ V
x
�

� �
w� þ VeðxÞw�; x 2 IR; t 2 IRþ ð1:1Þ
subject to the highly oscillatory function as initial data
w�ð0; xÞ ¼ eiS0ðxÞ=�g x;
x
�

� �
; �� 1: ð1:2Þ
Here w� is the complex wave field and � is a re-scaled Planck constant. Both bðyÞ > 0 and V(y) are smooth and periodic with
respect to the regular lattice C ¼ 2pZ, i.e.,
bðyþ 2pÞ ¼ bðyÞ; Vðyþ 2pÞ ¼ VðyÞ 8y 2 IR: ð1:3Þ
The external potential Ve is a given smooth function.
This type of Schrödinger equations is a fundamental model in solid-state physics [2,20], and also models the quantum

dynamics of Bloch electrons subjected to an external field [48]. This problem has been studied from a physical, as well as
. All rights reserved.
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from a mathematical point-of-view in, e.g., [1,7,34,40,47], resulting in a profound understanding of the novel dynamical fea-
tures. An essential feature of the model, regardless of the point-of-view taken, is the energy band structure imposed on the
model [6]. The mathematical asymptotic analysis as �! 0 combining both semiclassical and homogenization limits has been
a subject of intensive study in past decades, see e.g., [3,5,15,28,35,45,48].

In the semiclassical regime, where � is small, the external potential VeðxÞ varies at larger spatial scales than periodic
potential V(y) does and can be considered weak compared with periodic field. The wave function w� and the related physical
observables become oscillatory of wave length Oð�Þ. A direct simulation of (1.1) using the Bloch wave decomposition was
recently developed, see, e.g. [21], improving mesh sizes up to order Oð�Þ. However, this system involves several different
sources of oscillations, making direct numerical simulation prohibitively costly in the semiclassical regime.

A more realistic approach is to explore an asymptotic model by passing �! 0. The periodic structure calls for the two
scale expansion method [5,20] in which the electron coordinate y ¼ x

� and the space variable x are regarded as independent
variables:
w� ¼ A� t; x; yð ÞeiSðt;xÞ=�;
where the amplitude A� is assumed to admit an asymptotic expansion of the form
A�ðt; x; yÞ � A0ðt; x; yÞ þ �A1ðt; x; yÞ þ �2A2ðt; x; yÞ þ � � �
The insertion of the above ansatz into (1.1) gives, to the leading orders of �, a band Hamilton–Jacobi equation for the
phase S and the transport equation for the amplitude q:
St þ EðSxÞ þ VeðxÞ ¼ 0; ð1:4Þ
qt þ ðE

0ðSxÞqÞx ¼ 0; ð1:5Þ
where E(k) is determined by solving the Bloch eigenvalue problem
Hðk; yÞzðk; yÞ ¼ EðkÞzðk; yÞ; zðk; yþ 2pÞ ¼ zðk; yÞ; ð1:6Þ
where
Hðk; yÞ :¼ 1
2
ð�i@y þ kÞ½bðyÞð�i@y þ kÞ� þ VðyÞ
is a differential operator parameterized by k.
Singularity formation (Sx becomes discontinuous) in solutions of (1.4) is a generic phenomena even when the initial phase

is smooth. Before the singularity formation, the classical theory in [5] asserts that the wave function can be recovered by a
superposition of wave patterns on each band� �
w�ðt; �Þ �
X

n

ffiffiffiffiffiffi
qn
p ðt; �Þzn ðSnÞx;

x
�

� �
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iSnðt; �Þ
�

� �����
����

L2ðIRÞ

� Oð�Þ:
After the singularity formation standard schemes using shock capturing ideas will select the viscosity solution [11,12], which
is inadequate in this context for describing the relevant physical phenomena. Multi-valued solutions for (1.4) are physically
relevant ones. The first attempt to compute multi-valued solutions for (1.4) with bðyÞ � 1 was due to [17], using so called
K-branch solutions, see also subsequent works [16,18].

Phase space based geometric methods were first introduced for tracking wave fronts in geometric optics, such as the seg-
ment projection method [14,13] and the level set method [38,9,42,8]. More recently, a level set framework has been devel-
oped for computing multi-valued phases in the entire physical domain in [8,24,29,23,22]; main developments have been
summarized in the review article [30]. A key idea is to represent the n-dimensional bi-characteristic manifold of the
Hamilton–Jacobi equation in phase space by an implicit vector level set function. Further developments are geared at hand-
ing more complex potentials [31–33] or recovery of the original wave field [25] for Schrödinger type equations. For level set
approaches to paraxial geometrical optics we refer to [43,27,10,44,26].

The aim of this paper is to extend the level set method of [8,23] for linear Schrödinger equations to solve (1.1), (1.2) with
periodic structures. We formulate level set description to solve the banded WKB system (1.4), (1.5) and then compute total
averaged density over a sample set of Bloch bands. In order to illustrate the level set method developed in this paper, we let
/ðt; x; kÞ be a function in phase space ðx; kÞ 2 IR2, whose zero level set determines the multi-valued phase gradient u ¼ Sx, i.e.,
uðt; xÞ 2 kj/ðt; x; kÞ ¼ 0f g; ðt; xÞ 2 IRþ � IR:
It is shown that on nth Bloch band, / solves

/t þ E0nðkÞ/x � V 0eðxÞ/k ¼ 0:
The initial data for the level set function /ðt; x; kÞ is selected to uniquely imbed the initial phase gradient into its zero set.
Following [33], we compute the multi-valued density by
qnðt; xÞ 2
f ðt; x; kÞ
j/kj

����/ðt; x; kÞ ¼ 0
	 


; ðt; xÞ 2 IRþ � IR;
where f is determined by solving the band Liouville equation
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ft þ E0nðkÞfx � V 0eðxÞfk ¼ 0;
f ð0; x; kÞ ¼ qnð0; xÞ:

ð1:7Þ
Here EnðkÞ is obtained from solving the associated Bloch eigenvalue problem (1.6), for which we apply a standard Fourier
method.

The initial density on each band is calculated from w�ð0; xÞ in (1.2) through a projection procedure,
qnð0; xÞ ¼
1

2p
janðxÞj2;
where
anðxÞ ¼
Z 2p

0
gðx; yÞ�znð@xS0; yÞdy:
Considering the possible phase shift, the wave profile in each Bloch band takes the form
w�nðt; xÞ ¼
XKn

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qj

nðt; xÞ
q

zn uj
nðt; xÞ;

x
�

� �
exp

iSj
nðt; xÞ
�

 !
exp

ip
4

lj
n

� �
;

where the phase shift lj
n corresponds to the usual Keller–Maslov phase shift [36].

Finally, the total position density over all bands is evaluated using Bloch waves and multi-valued densities obtained on
each band:
�qðt; xÞ ¼
X

n

XKn

j¼1

qj
n:
Although the level set equation is formulated in phase space, the computational cost, when using a local level set method
such as those in [37,38,41], is almost linear in the number of grid points in physical domain. In contrast to the method of
using K-branch solutions in [17], the level set method developed here is simpler and more robust especially when the num-
ber of solution branches increase.

The rest of this paper is organized as follows: in Section 2, we derive the level set algorithm and analyze the effective
position density to be computed. Section 3 describes the numerical procedure in four steps. Finally in Section 4 a series
of numerical tests is given to validate our level set algorithm.

2. Level set formulation

In this section we follow a hybrid of semiclassical approximation and homogenization to derive the Bloch eigenvalue
problem and the Bloch banded WKB system for phase and amplitude, and then formulate the level set method for each Bloch
band, followed by computation of position density over a sample set of Bloch bands.

2.1. Semiclassical homogenization and Bloch decomposition

We now sketch the asymptotic procedure to derive a limiting model for the Schrödinger equation
i�
@w�

@t
¼ � �

2

2
@x b

x
�

� �
@xw

�
� �

þ V
x
�

� �
w� þ VeðxÞw�; x 2 IR; t 2 IRþ; ð2:1Þ

w�ðx; 0Þ ¼ eiS0ðxÞ=�g x;
x
�

� �
: ð2:2Þ
We use, as illustrated in [5,20], the two scale expansion method in which the electron coordinate y ¼ x
� and the space variable

x are regarded as independent variables. Thus consider the following equation in the independent variables (t,x,y):
i�@tw ¼ �1
2
ð@y þ �@xÞ bðyÞð@y þ �@xÞ

� �
þ V yð Þ þ VeðxÞ

 �
w: ð2:3Þ
Note that if we let y ¼ x=� in the solution wðt; x; y; �Þ of (2.3) we recover the solution of (2.1).
We now look for approximate solutions of the following form:
wðt; x; y; �Þ ¼ eiSðt;xÞ=� A0ðt; x; yÞ þ �A1ðt; x; yÞ þ � � �½ �; ð2:4Þ
where A0;A1; . . . are required to be 2p-periodic function in y. A substitution of this ansatz into (2.3), collecting terms which
are the same order in �, gives
0 ¼ eiSðt;xÞ=� c0ðt; x; yÞ þ �c1ðt; x; yÞ þ � � �½ �; ð2:5Þ
where the first two coefficients are
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c0ðt; x; yÞ ¼ � St þ Hðkðt; xÞ; yÞ þ VeðxÞ½ �A0; kðt; xÞ ¼ Sxðt; xÞ; ð2:6Þ
c1ðt; x; yÞ ¼ iLA0 � St þ Hðkðt; xÞ; yÞ þ VeðxÞ½ �A1: ð2:7Þ
Here we have set
Hðk; yÞ ¼ �1
2
ð@y þ ikÞ½bðyÞð@y þ ikÞ� þ VðyÞ; ð2:8Þ

L ¼ @t �
i
2
ð@y þ ikÞ½bðyÞ@x� þ @x½bðyÞð@y þ ikÞ�
� �

: ð2:9Þ
It is known [46] that for smooth V(y) and bðyÞ > 0;Hðk; yÞ admits a complete set of (normalized) eigenfunctions zn for each
fixed k, in the sense that fznðk; yÞg1n¼1 form an orthonormal basis in L2ð0;2pÞ for any fixed k. Let zn be the normalized eigen-
function corresponding to the eigenvalue EnðkÞ, then
Hðk; yÞznðk; yÞ ¼ EnðkÞznðk; yÞ;
znðk; yþ 2pÞ ¼ znðk; yÞ; k 2 B; y 2 R:

ð2:10Þ
Here k is confined to the reciprocal cell B ¼ ½�0:5;0:5� (or a Brillouin zone in physical literature) [5,46]. Correspondingly
there exists a countable family of real eigenvalues which can be ordered according to
E1ðkÞ 6 E2ðkÞ 6 � � � 6 EnðkÞ 6 � � � ; n 2 N;
including the respective multiplicity. The set EnðkÞjk 2 Bf g is called the nth energy band, which together with the corre-
sponding Bloch functions characterizes the spectral properties of the operator H(k,y). Standard perturbation theory shows
that EnðkÞ is a continuous function of k and is real analytic in a neighborhood of any k such that
En�1ðkÞ < EnðkÞ < Enþ1ðkÞ:
From now on we will suppress the index n whenever no confusion is caused.
We can thus satisfy c0 ¼ 0 in (2.6) by choosing
St þ EðSxÞ þ VeðxÞ ¼ 0 ð2:11Þ
and setting
A0ðt; x; yÞ ¼ aðt; xÞzðkðt; xÞ; yÞ:
Thus c1 ¼ 0 in (2.7) becomes
iLA0 � ðHðk; yÞ � EðkÞÞA1 ¼ 0:
By the Fredholm alternative, this equation has a solution A1 if and only if
hLz; zi ¼ 0: ð2:12Þ
A substitution of A0 ¼ aðt; xÞzðkðt; xÞ; yÞ into (2.12) leads to the following transport equation for a:
@taþ
1
2

a@xE0ðkðt; xÞÞ þ @xaE0ðkðt; xÞÞ þ ba ¼ 0 ð2:13Þ
with
b ¼ ð@tz; zÞ �
1
2
@xE0ðkðt; xÞÞ � i

2
hð@y þ ikðt; xÞÞ½bðyÞ@xz� þ bðyÞ@xð@y þ ikðt; xÞÞ½z�; zi:
We now turn to show that the above b is purely imaginary so that q ¼ jaj2 satisfies
qt þ ðE
0ðSxÞqÞx ¼ 0: ð2:14Þ
In fact, if we use Hk, then b can be recast as
b ¼ hzt ; zi �
1
2
@xE0ðkÞ þ hHk � @xz; zi þ kx

2
hbðyÞz; zi: ð2:15Þ
Let E(k) be a simple eigenvalue, then zðk; yÞ may be assumed analytic in k. Thus, differentiating Hðk; yÞz ¼ EðkÞz with respect
to k we have
E0ðkÞ � Hk

� �
z ¼ ½H � E�zk; ð2:16Þ
which upon taking inner product with z gives
E0ðkÞ ¼ hHkz; zi: ð2:17Þ
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Here we have used the fact that hzðk; �Þ; zðk; �Þi ¼ 1 and H � E is self-adjoint. Further we differentiate (2.17) with respect to x,
and noting that Hk is self-adjoint, to obtain
@xE0ðkÞ ¼ hz;Hk � @xzi þ hHk � @xz; zi þ hð@xHkÞz; zi ¼ 2RehHk � @xz; zi þ kxhbðyÞz; zi:
This combined with hzt ; zi 2 iR (which follows from hz; zi ¼ 1) when inserted into (2.15) yields
ReðbÞ ¼ 0:
The superposition principle for linear Schrödinger equations suggests that the wave function has an asymptotic description
of the form
w�ðt; xÞ ¼
X1
n¼1

anðt; xÞzn @xSn;
x
�

� �
eiSnðt;xÞ=� þOð�Þ; ð2:18Þ
where Snðt; xÞ satisfies the nth band Hamilton–Jacobi equation (2.11) with E ¼ En.
Upon these equations for density (2.14), phase (2.11) as well as the Bloch waves (2.10), we proceed to formulate our Bloch

band based level set method.

2.2. Bloch band based level set equation

Once we obtain the WKB system on nth Bloch band
St þ EðSxÞ þ VeðxÞ ¼ 0;
qt þ ðE

0ðSxÞqÞx ¼ 0;
the next task is to solve them numerically to obtain multi-valued solutions (here again band indexes are suppressed). Here,
multi-valued phase shall be sought in order to capture the relevant physical phenomena.

Let /ðt; x; kÞ be a function in phase space, whose zero level set implicitly describes the phase gradient @xSðt; xÞ, where
Sðt; xÞ solves (2.11), then / is proven to satisfy
/t þ E0ðkÞ/x � V 0eðxÞ/k ¼ 0; ð2:19Þ
/ð0; x; kÞ ¼ k� @xS0ðxÞ ð2:20Þ
with E0ðkÞ being solved from (2.10). The multi-valued velocity is then given by
uðt; xÞ 2 kj/ðt; x; kÞ ¼ 0f g 8ðt; xÞ 2 IRþ � IR:
The corresponding multi-valued density can be evaluated as suggested in [33]
qðt; xÞ 2 f ðt; x; kÞ
j/kj

����/ðt; x; kÞ ¼ 0
	 


8ðt; xÞ 2 IRþ � IR; ð2:21Þ
where f solves
ft þ E0ðkÞfx � V 0eðxÞfk ¼ 0; ð2:22Þ
f ð0; x;pÞ ¼ q0ðxÞ; ð2:23Þ
where q0ðxÞ is to be determined from the initial data w�ð0; xÞ, see (2.27). The averaged density can be evaluated as
�qðt; xÞ ¼
Z þ1

�1
f ðt; x; kÞdð/Þdk: ð2:24Þ
Note that we need to compute E0ðkÞ in the level set equation, which may also be evaluated based on znf g using (2.17).

Remark 1. The above procedure can be easily extended to more general case. For instance the case with coefficient bðx; x=�Þ
and potential Vðx; x=�Þ with no separation of two scales. However, in such case the Bloch eigenvalue problem becomes
spatial dependent:
Hðk; x; yÞzðk; x; yÞ ¼ Eðk; xÞzðk; x; yÞ; zðk; x; yÞ ¼ zðk; x; yþ 2pÞ 8ðk; xÞ 2 B � IR:
A level set formulation in multi-dimensional case can be derived in a straightforward manner.
2.3. Initial band configuration

We now discuss the recovery of the initial band density qnð0; xÞ from the given initial data
w�0 x;
x
�

� �
¼ g x;

x
�

� �
expðiS0ðxÞ=�Þ ð2:25Þ
with a real-valued phase S0 2 C1ðIRÞ and a possible complex-valued amplitude gðx; �Þ 2 L2ðIRÞ.
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From (2.18) it follows that one needs only to decompose g as follows:
gðx; yÞ ¼
X1
n¼1

anðxÞznð@xS0; yÞ:
The orthonormality of znð@xS0; yÞ leads to the following formula for an:
anðxÞ ¼
Z 2p

0
gðx; yÞ�znð@xS0; yÞdy:
The above decomposition ensures that
Z 2p

0
jw�0ðx; yÞj

2dy ¼
Z 2p

0
jgðx; yÞj2dy ¼

X1
n¼1

janj2: ð2:26Þ
Hence qnðxÞ can be evaluated by
qn ¼
1

2p janðxÞj2; ð2:27Þ
so that 1
2p

R 2p
0 jw

�
0ðx; yÞj

2dy ¼
P

nqn.

2.4. Evaluation of position density

In this section, we evaluate the position density and the wave field based on the quantities computed from the level
set algorithm.

Let uj
n; j ¼ 1; . . . ;Kn

n o
be the multi-valued velocities, Sj

n; j ¼ 1; . . . ;Kn

n o
and aj

n; j ¼ 1; . . . ;Kn

n o
be the corresponding phase

and amplitude on nth band, the wave function of two scales, associated with each uj
n, is
w�ðt; x; y; uj
nÞ ¼ aj

nðt; xÞznðuj
nðt; xÞ; yÞ exp

iSj
nðt; xÞ
�

 !
:

The wave field on each band is thus calculated from its phase space counterpart as
w�nðt; x; yÞ ¼
Z

w�ðt; x; y; kÞdð/Þdetð/kÞdk ¼
XKn

j¼1

Z
w�ðt; x; y; kÞdðk� un

j ðt; xÞÞdk ¼
XKn

j¼1

w�ðt; x; y; uj
nÞ

¼
XKn

j¼1

aj
nzn uj

n; y
� �

exp
iSj

n

�

 !
: ð2:28Þ
This wave function is periodic in the lattice scale y, we thus only calculate the averaged band density as
�q�nðt; xÞ ¼
1

2p

Z 2p

0
jw�nðt; x; yÞj

2dy:
Lemma 2.1. Away from caustics we have
�q�nðt; xÞ*
1

2p
XKn

j¼1

jaj
nj

2 as �! 0: ð2:29Þ
Proof. By a direct calculation we have
2p�q�nðt; xÞ ¼
XKn

j¼1

jaj
nj

2 þ
X
j–j0

aj
naj0

n expðiðSj
n � Sj0

nÞ=eÞ
Z 2p

0
znðuj

n; yÞ�znðuj0

n; yÞdy:
The cross-terms over different j; j0, denoted by O1ðnÞ, will converge, when away from caustics, to zero weakly as �! 0. In fact,
for any smooth test-function U
Z
R

O1UðxÞdx ¼
X
j–j0

Z
R

aj
naj0

n expðiðSj
n � Sj0

nÞ=eÞ
Z 2p

0
znðuj

n; yÞ�znðuj0

n; yÞdyUðxÞdx:
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According to the stationary phase lemma,1the non-trivial contribution as �! 0 comes from the stationary points of
Sj

nðt; xÞ � Sj0

nðt; xÞ, i.e.,
1 Let
A1 :¼ xjuj
nðt; xÞ ¼ uj0

nðt; xÞ; j–j0
n o

: ð2:30Þ
Note that for x 2 A1;
R

znðuj
n; yÞ�znðuj0

n; yÞdy ¼ 1. According to our level set construction this only happens at the caustic points
where j0 ¼ jþ 1 (or j� 1), and at such points aj

n ¼ aj0
n; S

j
n ¼ Sj0

n and @2
x ðS

j
n � Sj0

nÞ– 0. These terms will weakly converge to
O1ðnÞ*
X

x	2A1

jaj
nðx	Þj

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�

jð@xðuj
n � uj0

nÞðx	Þj

s
e

iplj
n

4 ;
where lj
n ¼ 1 or �1 depending on the sign change of @xðuj

n � uj0
nÞðx	Þ. However, at caustic points both @xuj

n and @xuj
n ¼ �/x=/p

become unbounded with different signs such that j@xðuj
n � uj0

nÞj ¼ 1. On the other hand at caustics aj
n also becomes un-

bounded. These together leave the above weak limit undefined at caustic points. h

We now consider all Bloch bands. Since the underlying equation is linear, the wave field over all bands is simply a super-
position of wave filed on each band
w�ðt; x; yÞ ¼
X1
n¼1

XKn

j¼1

aj
nzn uj

n; y
� �

exp
iSj

n

�

 !
:

Lemma 2.2. Let the total density be defined as
q�ðt; xÞ ¼ 1
2p

Z 2p

0
jw�ðt; x; yÞj2dy: ð2:31Þ
Then away from caustics, we have
q�ðt; xÞ* 1
2p

X
n

XKn

j¼1

jaj
nj

2 as �! 0: ð2:32Þ
Proof. A direct calculation gives
2pq�ðt; xÞ ¼
X

n

XKn

j¼1

jaj
nj

2 þ
X

n

X
j–j0

aj
n
�aj0

n expðiðSj
n � Sj0

nÞ=eÞ
Z 2p

0
znðuj

n; yÞ�znðuj0

n; yÞdy

þ
X
m–n

X
j;j0

aj
maj0

n expðiðSj
n � Sj0

mÞ=eÞ
Z 2p

0
znðuj

n; yÞ�zmðuj0

m; yÞdy

�
X

n

XKn

j¼1

jaj
nj

2 þ Q 1 þ Q 2:
As shown in Lemma 2.1 the term Q 1 ¼
P

nO1ðnÞ* 0 away from caustics.
For the term Q2 we explore the stationary phase lemma again. The only O(1) contribution comes from the stationary

points of Sj
nðt; xÞ � Sj0

mðt; xÞ, i.e.,
A2 :¼ xjuj
nðt; xÞ ¼ uj0

mðt; xÞ; m – n
n o

: ð2:33Þ
However for x 2 A2, it holds
Z 2p

0
znðuj

n; yÞ�zmðuj0

m; yÞdy ¼ 0;
where we have used the fact hznðk; �Þ; zmðk; �Þi ¼ dmn for any fixed k. Therefore, Q2 * 0 as �! 0. The proof is thus
complete. h

Based on Lemmas 2.1 and 2.2, the total position density �qðxÞ can be evaluated by
�qðxÞ ¼
X

n

XKn

j¼1

qj
n; ð2:34Þ
where qj
n ¼ 1

2p ja
j
nj2 is given by (2.21).
x	 be the critical point of the phase /ðxÞ; x 2 R. For any integrable function FðxÞ, the following asymptotic formula holds

Z
R

FðxÞei/ðxÞ=�dx ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p�
j/xxðx	Þj

s
exp signð/xxðx	ÞÞ

pi
4

� �
exp

i/ðx	Þ
�

� �
Fðx	Þ:
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Remark 2. The above analysis shows that in order to recover the wave field, one needs a caustic correction — the so called
Keller–Maslov phase shift [36] such that
w� t; xð Þ ¼
X

n

XKn

j¼1

aj
nðt; xÞzn uj

n;
x
�

� �
exp

iSj
n

�

 !
exp

ip
4

lj
n

� �
: ð2:35Þ
However, this modified wave profile is valid only before and after caustics. To obtain a uniformly valid wave field a globally
bounded aj

n needs to be constructed. This will be considered in a future publication.
2.5. 2D Strang splitting spectral method

This section is to present a spectral scheme to compute the solution of (2.3), i.e.,
i�@tw ¼ �1
2
ð@y þ �@xÞ b yð Þð@y þ �@xÞ

� �
þ V yð Þ þ VeðxÞ

 �
w: ð2:36Þ
The computed solution will be used to compare with the solution computed from our level set method.
For simplicity, we assume VeðxÞ be a periodic function in x 2 ½a; b�. Then wðt; x; yÞ is a periodic solution to (2.36) in both x

and y. We choose spatial meshes
Dx ¼ b� a
J

; Dy ¼ 2p
P
;

where both J and P are even integers. Let the grid points be ðxj; ypÞ
xj ¼ aþ jDx; j ¼ 0;1; . . . J � 1; yp ¼ pDy; p ¼ 0; . . . ; P � 1:
Let /j;pðtÞ be the numerical approximation of /ðt; xj; ypÞ.
Given /j;pðtÞ we shall compute /j;pðt þ DtÞ. From t to t þ Dt we follow [4] to solve Eq. (2.36) by a Strang Splitting Spectral

method. For j ¼ 0; . . . ; J � 1; p ¼ 0; . . . ; P � 1,
w	j;p ¼ exp � iDt
2�
ðVðypÞ þ VeðxjÞÞ

� �
/j;pðtÞ;

ŵ		m;q ¼ Gŵ	
� �

m;q
; G is defined in ð2:38Þ;

w		j;p ¼
1
JP

XJ=2�1

m¼�J=2

XP=2�1

q¼�P=2

ŵ		m;q exp im
2pðxj � aÞ

b� a
þ iqyp

� �
;

wj;pðt þ DtÞ ¼ exp � iDt
2�
ðVðypÞ þ VeðxjÞÞ

� �
w		j;p: ð2:37Þ
Here ŵm;q, the Fourier coefficients of wj;p, is defined as
ŵm;q ¼
XJ�1

j¼0

XP�1

p¼0

wj;p exp �im
2pðxj � aÞ

b� a
� iqyp

� �
for m ¼ � J
2 ; . . . ; J

2� 1 and q ¼ � P
2 ; . . . ; P

2� 1.
We now determine the operator G as follows: we insert the Fourier series
wðt; x; yÞ ¼
X
m;q

ŵm;qðtÞ exp im
2pðx� aÞ

b� a
þ iqy

� �
; bðyÞ ¼

X
q

b̂q expðiqyÞ;
into the equation spilt from (2.36):
i�@tw ¼ �
1
2
ð@y þ �@xÞ b yð Þð@y þ �@xÞ

� �
w

and truncate to arrive at the following ODE system
i�
d
dt

ŵm;q ¼
1
2

XP=2�1

q0¼�P=2

ŵm;q0 b̂q�q0 qþm
2p�

b� a

� �
� q0 þm

2p�
b� a

� �
; q ¼ � P

2
; . . . ;

P
2
� 1:
Introduce a P � P matrix Ĥ with entries as
Ĥr;s ¼ b̂r�s r � P
2
� 1þm

2p�
b� a

� �
� s� P

2
� 1þm

2p�
b� a

� �
:
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The solution operator G is thus given as
ðGŵÞm;q ¼ exp
�iDt

2�
H

� �
ðŵm;�P=2; . . . ; ŵm;P=2�1Þ>

� �
qþP=2þ1

: ð2:38Þ
If b � 1, then operator G can be reduced to a simple formulation as
ðGŵ	Þm;q ¼ exp � iDt
2�

qþm
2p

b� a
�

� �2
 !

ŵ	m;q:
3. Numerical procedures

In this section, we first examine the Bloch waves numerically and then show how to implement the level set method
developed in this paper. The solution process is carried out in following steps.

Step 1. Solving Bloch eigenvalue problem.
We first evaluate EnðkÞ from a sequence of the eigenvalue problems (2.10)
VðyÞzn þ
1
2
ð�i@y þ kÞ bðyÞð�i@y þ kÞzn

� �
¼ EnðkÞzn; ð3:1Þ
where EnðkÞ is the nth energy band, and eikyzn is the nth Bloch function with k 2 ½� 1
2 ;

1
2�.

Since znðk; yÞ; bðyÞ and V(y) are 2p-periodic functions in y, we can expand them in Fourier series
VðyÞ ¼
X
q2Z

V̂q expðiqyÞ; V̂q ¼
1

2p

Z 2p

0
VðyÞ expð�iqyÞdy; ð3:2Þ

bðyÞ ¼
X
q2Z

b̂q expðiqyÞ; b̂q ¼
1

2p

Z 2p

0
bðyÞ expð�iqyÞdy; ð3:3Þ

znðk; yÞ ¼
X
q2Z

ẑn;q expðiqyÞ; ẑn;q ¼
1

2p

Z 2p

0
znðk; yÞ expð�iqyÞdy: ð3:4Þ
Insertion of these into (3.1) leads to
1
2

X
q2Z
ðkþmÞðkþ qÞâm�qẑn;q þ

X
q2Z

V̂m�qẑn;q ¼ EnðkÞẑn;m; 8m 2 Z: ð3:5Þ
Extracting 2N þ 1 terms for q 2 �N; . . . ;Nf g, we have the corresponding matrix H ¼ ðHm;qÞ of the eigenvalue problem with
Hm;q ¼
1
2
ðkþmÞðkþ qÞâm�q þ V̂m�q; �N 6 m; q 6 N:
This is a Hermitian matrix satisfying
H

ðẑnÞ�N

..

.

ðẑnÞN

2
664

3
775 ¼ EnðkÞ

ðẑnÞ�N

..

.

ðẑnÞN

2
664

3
775: ð3:6Þ
Note that by a transform of ~znðyÞ ¼ znðk; yÞeimy in (3.1), we obtain an equivalent eigenvalue problem to (3.5) for ~zn, which
shows that the eigenvalue problem is invariant under any integer shift in k. Taking m ¼ 1, we have the following relation:
Enðkþ 1Þ ¼ EnðkÞ; znðkþ 1; yÞ ¼ znðk; yÞ; ð3:7Þ
which implies that the fundamental domain of dual lattice, B ¼ ½�0:5; 0:5�, is not restricted. Note that the eigen-matrix in
(3.6) is independent of spatial grids and time, we only have to solve it once; therefore the computational complexity of this
step is not a major concern. In our simulation, N ¼ 50—100.

After solving the above Bloch eigenvalue problem at each grid point ki 2 ½�0:5;0:5�; i ¼ �Mk; . . . ;Mkf g with mesh size Dk,
we are equipped with discrete function values of EnðkiÞ.

We now evaluate E0nðkiÞ; i ¼ �Mk; . . . ;Mk

� �
for any grid point ki. A natural way of computing first order derivative to a

certain order accuracy is by polynomial interpolation using nearby grid points. Note that, periodic boundary conditions
are used due to the 1-periodicity of E(k), (3.7). A second order approximation is
E0ðkiÞ ¼
Eðkiþ1Þ � Eðki�1Þ

2Dk
ð3:8Þ
and a fourth order approximation is given by
E0ðkiÞ ¼
Eðki�2Þ � 8Eðki�1Þ þ 8Eðkiþ1Þ � Eðkiþ2Þ

12Dk
: ð3:9Þ
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Note that in this case, E0ðkÞ can also be computed from z(k,y) by the integral (2.17).
Step 2. Bloch band based decomposition of initial data.
Given the WKB-type wave function
w� x;
x
�

� �
¼ g x;

x
�

� �
expðiS0ðxÞ=�Þ;
we compute the band density qn defined in (2.27) by using different number of energy bands from the Bloch waves. We will
check how many eigen-modes are needed to recover the density q ¼ 1

2p

R 2p
0 jw

�ðx; yÞj2dy at a desired accuracy. Here we mea-
sure the accuracy by L1 error
error ¼ q�
XM

n¼1

qn

�����
�����

L1

; M ¼ 2;4;6;8;10; . . . ð3:10Þ
The choice of M is studied numerically in Section 4.1. We find out that for smooth potential V(x) and initial w�0ðxÞ, eight bands
are sufficient for the numerical simulation.

Step 3. Solving the level set equation
/t þ E0ðkÞ/x � V 0eðxÞ/k ¼ 0 ð3:11Þ
subject to initial data (2.20).
We discretize space with uniform mesh size Dx and Dk, and use /ðt; xi; kjÞ to denote the grid function value. Let

/ijðtÞ 
 /ðt; xi; kjÞ be the numerical solution, computed from the upwind semi-discrete scheme
d
dt

/ijðtÞ ¼ Lð/ijÞ; ð3:12Þ

Lð/ijÞ :¼ �E0ðkjÞ
ð/ijÞ

þ
x þ ð/ijÞ

�
x

2
þ jE0ðkjÞj

ð/ijÞ
þ
x � ð/ijÞ

�
x

2
� V 0eðxiÞ

ð/ijÞ
þ
k þ ð/ijÞ

�
k

2
þ jV 0eðxiÞj

ð/ijÞ
þ
k � ð/ijÞ

�
k

2
; ð3:13Þ
where E0ðkÞ was evaluated in Step 1. Higher order spatial approximation can be achieved by high order ENO reconstruction
applied to both /�x and /�k respectively, see [39]. Here we use a second order ENO reconstruction in our simulation.

In time, a two-stage, second order Runge–Kutta method [19] is used
/	ij ¼ /n
ij þ DtLð/ðnÞi;j Þ;

/nþ1
ij ¼ 1

2
/n

ij þ
1
2

/	ij þ DtLð/	ijÞ
� �

:
ð3:14Þ
Now, we briefly summarize the procedure here:

(i) Find high order approximation of ð/ijÞ
�
x;k using ENO, and E0ðkjÞ using (3.8) or (3.9) at each grid point.

(ii) Solve (3.11) by using (3.12) and (3.14).
(iii) Project / ¼ 0 onto x� k plane to get Sx.

Note that in (ii), one may use interpolation to approximate E0ðkÞ when grid point of E0ðkjÞ is not coincided with the grid
point obtained in (3.8) or (3.9). In our computation, we simply choose the same grid points.

Step 4. Computing the density q.
We solve (2.22) with initial condition (2.23) using methods described in Step 3 in each band to obtain fn for n ¼ 1; . . . M,

where M is the number of bands to be sampled. M is taken to be 10 in our numerical tests in next section.
The position density is to be computed by
�qðt; xÞ ¼
XM

n¼1

Z
fnðt; x; kÞdð/nÞdk ¼

XM

n¼1

X
ki

fnðt; x; kiÞdgð/nðt; x; kiÞÞDk; ð3:15Þ
where dg is an approximation of the d-function. Let v denote the characteristic function, our choice is
dgð/Þ ¼
1þ cosðp/=gÞ

2g
v½�g;g�:
Finally, we compare the density obtained from (3.15) with
qðt; xÞ ¼ 1
2p

XP�1

p¼0

jwðt; x; ypÞj
2Dy; ð3:16Þ
where wðt; x; yÞ is computed by the Strang splitting spectral method (2.37) for different �.
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4. Numerical examples

4.1. Bloch band based initial decomposition

We first examine the accuracy of the Bloch band decomposition of the initial data
w0ðxÞ ¼ gðx; x=�ÞeiS0ðxÞ=�; �� 1;
in terms of Bloch functions fzng obtained from (3.1) with VðyÞ ¼ cosðyÞ and bðyÞ � 1. This internal potential VðyÞ ¼ cosðyÞ
will be used in some numerical tests below.

The eigen-structure of this potential V(y) and b(y) is shown in Fig. 1, in which we observe that all five eigenvalues are
distinct for any k 2 B. It meets the assumption of the Bloch Band expansion in Section 2.
−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
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Eigenvalues for first 5 bands

Fig. 1. Eigenvalues for VðyÞ ¼ cosðyÞ and b � 1 of nth band, with n ¼ 1; . . . ;5 (bottom to top).
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Fig. 2. Initial data (iii), Bloch decomposition of initial density, exact density vs. approximation with eight bands.
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Fig. 3. Example 1, homogenized density at different times.
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In all examples of this section the computation domain is chosen to be ðx; kÞ 2 ½0;2p� � ½�0:5;0:5� with 151� 101 grid
points and 101� 101 eigen-matrix.

We compare the L1 error of the Bloch decomposition, defined in (3.10), for the following data:

(i) gðx; yÞ ¼ exp �ðx�pÞ2
2

� �
; S0ðxÞ ¼ 0,

(ii) gðx; yÞ ¼ exp �ðx�pÞ2
2

� �
; S0ðxÞ ¼ �0:3 cosðxÞ,

(iii) gðx; yÞ ¼ exp �ðx�pÞ2
2

� �
cos yð Þ; S0ðxÞ ¼ 0.

A comparison table is given below.
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Fig. 4. Example 2, n ¼ 3, velocity and density at different times.
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Fig. 5. Example 2, n ¼ 4, velocity and density at different time.
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# of bands
 4
 6
 8
 10
 12
L1 error of (i)
 0.032843
 0.009905
 0.009879
 0.009879
 0.009879

L1 error of (ii)
 0.017008
 0.008111
 0.008101
 0.008101
 0.008101

L1 error of (iii)
 0.691181
 0.062764
 0.059332
 0.059329
 0.059329
From the above table we see that eight bands give a good approximation with L1 error of the order of 10�2, with Dx ¼ 2p=150
and Dk ¼ 1=100. Including more bands does not seem to improve the accuracy of decomposition. Fig. 2 shows a comparison
between the exact density and an approximation using eight bands of data (iii). We see that they match very well. This tells
that, in solving level set equation 3.11, only a few bands are needed, which makes our level set method more practical.

4.2. Numerical examples

We consider the periodic potential� �

V ¼ cos

x
�

for all examples below.
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Example 1. b ¼ 1;Ve ¼ 0 and
w�ð0; xÞ ¼ exp �ðx� pÞ2

2

 !
exp

�0:3i cosðxÞ
�

� �
:

This example is to compare total averaged density computed from our level set (LS) algorithm with the corresponding quan-
tity in 3.16. From Fig. 3, we observe that in these three plots each density computed by the level set algorithm predicts the
correct trend as desired.

In what follows we shall test our level set algorithm for different choices of b and external potentials as well as of znðk; yÞ.

Example 2. b � 1;Ve ¼ 0, and
w�ð0; xÞ ¼ e
�0:3i cosðxÞ

� e�ðx�pÞ2 znð0:3 sinðxÞ; x=�Þ; n ¼ 3;4;5:
This example is to test capacity of the level set algorithm to capture multi-valued velocities and associated densities in dif-
ferent bands.
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Fig. 6. Example 2, n ¼ 5, velocity and density of band 5 at different times.



velocity at time 0.0012111 of band 5
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Fig. 7. Example 3, velocity and density of band 5 with Ve ¼ jx�pj
2

2 at different times.
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From the Bloch eigenvalues given in Fig. 1 we see that when n ¼ 3; E03ðkÞ is positive when k > 0 and negative when
k < 0; jE4ðkÞj � �2jkj and jE5ðkÞj � 2jkj. Thus when initial velocity is a sine profile, both the third and fifth band will lead to
multi-valued solutions to the corresponding equation for u ¼ Sx:
Table 1
L1 error

# of ba

L1 erro
ut þ E0nðuÞux ¼ 0:
The forth band leads to a smooth rarefaction profile in u. The density is calculated as (3.15).
The case n ¼ 3 is illustrated in Fig. 4 for multi-valued velocity and averaged density at different times. From these figures

we see that the density becomes infinite where the velocity has turns.
The case n ¼ 4 is displayed in Fig. 5, in which we see that as the rarefaction appears around x ¼ p, the averaged density

tends to zero. Note that the multi-valued velocity at the boundaries are the waves from adjacent period, because of the
periodic boundary condition.

When n ¼ 5, multi-valuedness in velocity appears immediately when t > 0, see Fig. 6.

Example 3. b � 1, the harmonic potential Ve ¼ jx�pj2
2 and the initial data
w�ð0; xÞ ¼ e
�0:3i cosðxÞ

� e�
ðx�pÞ2

2 z5 0:3 sinðxÞ; x
�

� �
:

This example is to show the level set method to be capable of dealing with non-trivial external potentials. In presence of a
non-trivial Ve, both shapes and amplitudes of u will change, a larger computation domain may be needed so that the com-
puted velocity remains to be observed in k direction. In Fig. 7 we observe the motion of peaks in intensity, which corresponds
to the location of turning points in velocity.

Example 4. b ¼ 3
2þ sinðyÞ;Ve ¼ 0, and
w�ð0; xÞ ¼ exp �ðx� pÞ2

2

 !
exp

�0:3i cosðxÞ
�

� �
:

Here we test this initial data with the Mathieu potential V ¼ cosðyÞ [17]. The first eight Bloch eigenvalues for this potential
are shown in Fig. 8. We first do the initial Bloch decomposition with L1 errors shown in Table 1, where Dx ¼ 2p=100 and
Dk ¼ 1=100 have been used. In our level set method, we use 10 bands. In Fig. 9 with 201� 101 grid points, we see that
the peaks first move toward center then concentrate at x ¼ p.
−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−2

0

2

4

6

8

10
Eigenvalues for first 8 bands

Fig. 8. Eigenvalues for VðyÞ ¼ cosðyÞ and bðyÞ ¼ 3
2þ sinðyÞ of band 1,2, . . . ,8 (bottom to top).

table for initial Bloch decomposition of Example 4 with 101� 101 grid points and 101� 101 eigen-matrix.

nds 2 4 6 8 10 12

r 0.480772 0.015661 0.007301 0.007233 0.007233 0.007233
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Fig. 9. Example 4, total averaged density with 10 bands when t ¼ 0:003;0:1 in upper row (from left to right) and t ¼ 0:3;0:5 in bottom row.
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